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Introduction

The earth's gravitational potential can be expressed in a spherical harmonic
series where the potential coefficients are 61_ , §£_ where the overbar indicates

o mn - — = —

! . full normalization (Kaula, 1966, Heiskanen and Moritz, 1967). The potential
degree variances are computed from:
: /)
L 2 < 2 3
‘. , . ol = ,"O(Cll*‘%l) (])
| Il

Estimates of the variation of 0, were obtained from gravimetry by Kaula (1966)
who suggested the following behavior:
10°° .
0 = — (2)
[ 77
Another term of interest is the anomaly degree variance:
2

VR Y N, e

T 2V =2 | z2

: ¢, = ¥(L-1) J)(c“ + 5% (3)
. =L

v where Yy is an average value of gravity over the earth,

N t Estimates of o0, and ¢y are nceded for several purposes. We can gain

o information on the density structure of the earth by considering various mass
i distributions that would imply a potential cocfficient variation of the form as

| equation (2) (Kaula, 1977). We can also compute covariance functions of
quantities related to the earth's gravity field if we have models of the anomaly
degree variances.

. The need for some simple formulas to describe o, or ¢, have led to a

. number of studies that have fitted empirically dete rmined data to various models.
Such procedures were followed hy Rapp (1973) who used limited satellite implied
information and limited terrestrial gravity information. A more refined model

was described in Tscherning and Rapp (1974) that became widely used as the

basis for covariance computations needed for the prediction of quantities dependent
on the gravity field using least squares collocation. Moritz (1977) suggested an

t improved model for the anomaly degree variances that was investigated by

Jekeli (1978) and Hein and Jochemczyk (1979). Wager and Colombo (1978)
analyzed altimeter data to imply some simple rules for 0, that depended on the
” range of {4 being investigated. Heller and Jordan (1979) used the superposition
"- of white noise spherical shells at various depths with various masses to generate
. a disturbing potential.

Recently, several questions have arisen that can be answered with new data
that is now available, Specifically, we are interested to see if the real world
poteuntial coefficients do fall off as 1/62, or could it be 1/?2‘5, or some other
power, Arc the parameters of the ¢, model described by Tscherning and Rapp
(1974 substantially valid today ? Is the model suggested by Moritz (1977) a better
fit to existing data? Do the suggestions of Wagner and Colombo (1978) and Heller
and Jordan (1979) fit our new data ?

-1-
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The data that we will consider are the potential coefficients to degree 36
from the GEM 10B ficld (Lerchet, al., 1978), and the potential coefficients to
degree 180 based on an adjusted set of 64800 1°x 1° mean free air anomalies
described by Rapp (1978).

Potential Coefficient Modelling

'The first modelling will be done with the following equation:

A x10-°
LB

so that for Kaula's rule A =10 and B =2, Shown in Figure 1 are the values of

o from GEM 10B, from Kaula's rule of thumb and as implied by the ¢, model

of Tscherning and Rapp. These two models have clearly more power in them
than in the actual gravitational field.

0(CparSga) = (4

We then carried out least squares fits to (4) solving for A and B that best
fit the values from GEM 10B and the 180, 180 solution in two different minimization
procedures. The first procedure minimized the sum of the squares of the residuals
while the second procedure effectively minimized the sum of the squares of the
percentage residuals. (A percent residual would be 100 (adjusted value - observed
value)/(observed value),) This latter procedure is more effective when fitting to
data having wide variations in magnitudes. We give in Table 1 values of A and B
for different weighting cases. We see that the usc of weights as 1/0bs® yields
poorer residual fits but slightly better percentage fits. The differences between

the GEM 105 and the 180, 180 solutions do not appear significant. Plots of GEM 10B
and the two GEM 10B fits are shown in Figure 2,

Table 1. Model Parameters for Equation (4) hy Fitting Observed Potential
' Coefficient Variation in the Range of Degree 3 to 36,

Solution A B RMS RMS Weighting
Residual x10° | ¥, Residual

GEM 10B | 10.6 | 2.17 0.026 16.3 1/0bs®

GEM 10B | 13.2 | 2.26 0.014 16.8 equal

180, 180 9.41 | 2.12 0.037 16.5 . 1/obs®

180, 180 13.8 | 2.30 0.014 19.9 (L equal

We have also carried out fittings to cquation (4) where we have fixed B to
be 2or 2.5 exactly and solved for A for the two ranges of degree 3 to 20 and

3 to 36, The results are given in Table 2,
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Table 2, Fitting to Equation (4) Enforcing Parameter B
Using the GEM 10B Potential Coefficients

Range A B* RMS RMS Weighting
Residual x 10" | % Residual
3-20 7.02 1 2.0 0.086 22.4 1/0hs’
3-20 9.57 | 2.0 0.032 50.0 equal
3-20 22.3 2.5 0.087 18. 6 1/0bs"
3-20 17.8 2.5 0.025 24.0 equal
3-36 6.68 | 2.0 0.070 19.0 1/0obs”
3-36 9.57 | 2.0 0.024 53.3 equal
3-36 27,0 2.5 0.012 28,1 1/obs™
3-36 17.8 2.5 0.019 36.6 equal

* Fixed value

If we consider the degree range 3 to 20, the best percentage fit is obtained
when B is 2.5. If we consider the range 3 to 36, the best percentage fit is
obtained when B is 2.0. Thus, the answer to the question as to how the potential
coefficients decay vis 2.0 or 2.5 seems to depend on the degree range being
considered. However, even in the range degree 3-20 the use of B = 2.5 is only
slightly better than the 2,0 value. To graphically display the differences, we
show in Figure 3, the case 3 to 36 with B =2 and B =2.5 with weighting as
1/0bs® 1t is clear that at the higher degrees, the solution with B = 2 gives a
better fit to the data than the B = 2.5 case,

We next consider the potential coefficient variation implied by the solution
to degree 180. We show in Figure 4 this variation along with the variation implied
by Kaula's rule of thumb and the Tscherning/Rapp anomaly degree variance model.
At low degrees, the actual field has less power than the two models. The Tscher-
ning/Rapp model has more power at all degrees, and the Kaula rule has less power
after degree 70. In Figure 5, we show again the 180, 180 variation along with the
Wagner and Colombo (1978) model and the five shell model of Heller and Jordan
(1979). The Wagner and Colombo model consists (for the range of £ considered
here) of five different functions of the form of equation (4). The Wagner and
Colombo model fit our data much better than the data of Heller and Jordan.

We have fitted equation (1) to the data with results shown in Table 3 for
the case of two parameters being found, and in the case B is fixed at 2 or 2. 5.
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Table 3. Model Parameters for Equation (4) from Fitting Observed Potential
Coefficient Variations in the Range of Degree 3 to 180

A B RMS RMS Weighting
Residual x10° | 9, Residual
4,10 | 1,80 0.045 13.8 1/0bs”
13.7 2.29 0.006 59.8 equal
9.71 | 2.0%* 0.011 26.6 1/0bs®
9,54 | 2,0 0.011 26.0 cqual
81.6 2,5% 0.036 106 1/obs®
17.7 2,5% 0.007 76.0 cqual

* Value fixed in the adjustment. ;

We show in Figure 6 plots of the fits for the first two solutions where we
see that the solution with the minimum percent residual fits best at the higher
degrees. In the case of B fixed at 2 there is no substantial difference in the
results from either weighting scheme. When B is tuken as 2,5, the fits are
substantially poorer than when B is 2.

Anomaly Degree Variance Modelling

Anomaly degree variances can be computed from potential coefficients i
using equation (3). (More rigorous equations are discussed in Jekeli (1978).) '
The Tscherning/Rapp model took the form:

. AU
€1 (£ -2)(L+B) )

where B is a positive integer. In addition to A and B as parameters, an
additional term, s, was introduced such that the sum of the ¢, times st
would yield the point anomaly variance, Cq, 2t the surface of the carth. We have:

[eo]

Co :Z c}’. SI,+2 (6)

[ A

b In Tscherning/Rapp, t%)e parameters were A = 425.28 mgal®, B = 24, and

[ s = 0,999617. These quantities were obtained by fitting the model (from degree

" * 3) to observed anomaly degrec variances to degree 20, 1° and 5° block anomaly
variances, and a point anomaly variance of 1795 mgal” with respect to an ellip-
soidal reference ficld.

For this paper, we have extended this fitting to the anomaly degree variances
to degree 180 but have excluded the block variances because they have become
extraneous information. We have introduced information on the horizontal gradient
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variance Ggy for help in strengthening the solution. ‘The horizontal gradient
variance is related to the anomaly degree variances by (Jekeli, 1978):

Gou = %y'('ﬂ—)—lézzcl Sl'*"‘
t=2

(Pertinent discussions on the interpretation of R, c¢,, and 8 may be found in
Jekeli (ibid).; However, we have adopted for use with equation (5) only, u

Gou = 3500 E© which is that implied by the Tscherning/Rapp model. This value
is too high in terms of the real world as pointed out by Moritz (1977) but as
shown by Jekeli (1978), the Tscherning/Rapp model is not compatible with a low
horizontal gradient variance,

M

We therefore made a parameter fit to the observed anomaly degree variances
from degree 3 to 180, a point anomaly variance of 180025 mgalz and a horizontal
gradient variance of 3500% 50 E°. The computer program used was originally
written by Jekeli for his earlier studies. A number of different runs were made
with different B values and weighting schemes. Two solutions of specific interest
are detailed in Table 4. Besides giving Co, Gow, Lo (the undulation variance)
of the model, we give, in the table, the correlation length which is defined as
£ where C(§) = Co/2. :

Table 4, Parameters, Residuals, and Adjusted Values Obtained in Fitting
to the Anomaly Degree Variance Model of Tscherning/Rapp

)

Solution One

Solution Two

A

B

s
RMS ¢ Residual
RMS % Residual

Co*

GOH

Lo

£

135.19 mgal®
5
0.999780
1.35 mgal2
49
838 mgal®
3424 E°
599 m°
65 km

429.48 mgal®
24
0.999613
3.08 mgal®
108
1801 mgal®
3500 E°
617 m"
43km

* Add 7.6 mgal® to refer to cllipsoidal model,
+ Add 314 m® to refer to ellipsoidal model.

Solution One was made to give the hest overall fit to the anomaly degree
viriances, Solution Two was made to fit the anomaly degree variances as well as
possible and to yield a point anomaly variance of about 1800 mgal®, This latter
solution has a B value the same as the original Tscherning/Rapp model, with the
A and s values being only slightly different. Because of this agreement, we
consider that the parameters used in the earlier model are still valid provided
we are willing to accept the high gradicnt variance.

-11-
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These anomaly degree variance models imply a potential coefficient variation
found by substituting (1) into (3). Plots of these variations are shown in Figure 7.
solution Two shows systematically more power than the observed field while
Solution One shows less power after about degree 15,

In order to avoid the high gradient variance associated with the ¢, model
given as equation (5)  Moritz (1977) suggested a two component model. Jekeli
(1978) slightly rccast this model into the following form:

2 -1 Q.2 -1 2+

—C N, ———5——0 8
P+ A} ¥ (%)

M TR TR

where oy, 02, 0, 0., A and B are quantities to be determined. In practice,
A and B arce integers that are varied while the other quantities are solved for in
an adjustment procedure.  This procedure was implemented by Jekeli (1978) who
found paranicters based on available data which included the ¢, values implied
by the GEM 9 potential coefficients, a Co, and Gn,, values, The ) values
griven in (8) will refer to a sphere whose radius is the mean radius of the earth.
Conscquently, the point anomaly variance on the surface of this sphere can be
found by substituting (8) into (6) and setting s to 1,

The fitting to the  ¢; model given in cquation (8) was carried out using the
given anomaly degree variances to degree 180, a Cn - 1800 mgalsz, and a
Gaw  BOOE® Initial fits with Go, as used by Jekeli (1978) and Moritz (1977)
did not vield good data fits. The value of 800 E° was chosen considering the
obscrvations described by Hein et, al,, (1979). However, Ga, still remains a
weak link in our model development.,

Approximately 25 different runs were made with different A and B values
and different weighting schemes,  (In these fits the anomaly degree variances
were computed from (3) without any further reduction to 4 mean sphere,) We give
the results of these fits in Table 5 for two solutions, Case One is the solution
that gives the best overall fit to the data, and Casc 'Two s the one that best fits
the observed anomaly degree variances. These e solutions, in terms of
potential coefficient variations, are shown in Figure 8. At high degrees, we see
that Case One has more power than the actual field or Case Two. This occurs in
this model to satisfy the need for a Cq of about 1800 mgal®,

-12-
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Table 5. Parameters, Residuals, and Adjusted Valucs Obtained in Fitting
to the Anomaly Degree Variance Model of Moritz

Case One Case Two
a, 3.4050 mgal®| 14.966 mgal®
o2 140.03 mgal®! 999,25 mgal®
o, .998006 i . 987969
o. 914232 | 850000
A 1 i 75
B 2 20
RMS ¢y Residual] 1.08 mgal” 0.93 mgal®
RMS % Residual] 39,2 15.1
Co* 1794 mgal® | 647 mgal®
Gon 1053 E° 15 E°
Lot 616 m> 641 m°
£ 24 km 110 km

* Add 7.6 mgal® to refer to ellipsoidal model.
+ Add 314 m? to refer to ellipsoidal model.
++ Constrained to this value.

Summary and Conclusions

In this paper, we have tried to improve our knowledge of potential coefficient
and anomaly degree variance behavior by comparing new data to existing models
and by obtaining new parameters of various models, The primary new information
going into these models is a set of potential cocfficients given to degree 180 based
on satellite derived potential coefficients, terrestrial gravity anomalies, and
anomalies derived from Geos-3 altimeter data.

One of the first steps was to compare the potential coefficient variations of the
GEM 10B solution to the variations implied by the Kaula rule of thumb and the
Tscherning/Rapp degree variance model. We found that both models have signifi-
cantly more power than exists in the real gravity ficld. Two parameter fits to the
data were carried out. Other fits were carried out to see if the potential coefficients
decay as 1/2° or 1/2%". Choosing the criteria as a best percentage fit, the best
fit is obtained with a fall off of 1/£% for £ bhetween 3 and 36, For £ between 3
and 20, a fall off of 1/£72 is slightly better than 1/2°.

We then made comparisons and [its to a number of different potential coeffi-
cient and anomaly degree variance models from £ equal 3 to 180, We summarize
these results in Table 6 for a number of common quantities,




Table 6. Summary of Model Comparisons and Fits With and To
the Potential Coefficient Solution to Degree 180

|
|
\
:
l

Model Number of | Pot. Coeff. variances* Correlation
Parameters| Residuals Co Gow Lo Length
RMS x 105 % |(mgal®)| E® |(m®) (km)
i Kaula 2 0126 |28 1111t | 1600t | 705t
! Tsche rning/Rapp 3 0074 |38 1787 |3500 |612 42
'1 Heller/Jordan 10 .0200 | 75| 1816 | 255 |556 66
‘ Wagne r/Colombo 12 0078 |14 11937 |1656" | 642t
| A/1®, Ccase 1%+ 2 .0449 | 14| 15567 |s210t | 216"
i A/18, Case 2 ** 2 0061 (60| 27t | 28" |s04t
One comp. [ Case 1771 3 L0074 1391801 |3500 |617 43
1 ¢y model lcase 2Tt 3 0048 |25| 838 |3424 |s599 65
1 Two comp. {Czlse 1+% 6 0072 [ 17] 1794 |1053 |616 24
L ¢y model lcase 2+T 6 L0640 | 16| 647 15 | 641 110

*  From Degree 3.
* Cascl: A=4,10x10"%, B=1.80; Case2: A =13.7x10"%, B =2,29.

Case 1: A = 429.48 mgal®, B = 24; Case 2: A = 135.19 mgal®, B = 5.
See Table 4,

s =0.999617

+13:

——

Of the existing models, the Wagner/Colombo model seems best although
the anomaly variance is less than the 1800 mgal® we feel is reasonable. Neither
case of the four A/2° fits all quantities well although the fit to potential coeffi-
cient variations is quite good for case 1. The fits of the one component degree

' variance model do not appear significantly better than the original Tscherning/
o Rapp model. The two component model, case 1, seems to give the best overall
fit to the data we have knowledge of, although the correlation length seems to
he shorter than one usually expects. However, it agrees quite well with the

estimate of 22 km obtained from the anomaly covuriance function given in Table
19 of Rapp (1964).

We have also computed a 1° covariance function from the two component
degree variance model (A =1, B = 2) which is shown in Figure 9. We also
show the empirically determined 1° covariance function from Tscherning and

Rapp (1974, Table 15) with both functions scaled to have the same variance. :

‘\ The agreement is quite good, especially at the location of the zero crossings. Y
i

| 3

We specifically conclude that for covariance studies not dealing with i

accuracy estimations in gradient computations, the parameters of the Tscherning/
Rapp model are still valid. For a better fit to all expected values, the fit to the

two component model suggested by Moritz (specifically case 1 in Table 6) seems
to be best,

-16-
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